Visual Tools
Calculators
Tables
Mathematical Keyboard
Converters
Other Tools

Combinatorics Symbols



Linear Algebra
Mathematical Logic
Calculus
Trigonometry
Set Theory
Probability
symbollatex codeexplanation
n!
n!
Factorial of n
nPk
{n \mathcal{P} k}
Number of permutations of k elements chosen from n
nCk
\binom{n}{k}
Number of combinations of k elements chosen from n
P(A)
P(A)
Probability of event A
|A|
|A|
Cardinality of set A (number of elements)
\sum
Summation operator
Π
\prod
Product operator
(x + y)ⁿ
(x + y)^n
Expansion of a binomial raised to the nth power
∑ₖ₌₀ⁿ (nCk) xⁿ⁻ᵏ yᵏ
\sum_{k=0}^n \binom{n}{k} x^{n-k} y^k
Binomial theorem expansion
nCk = n! / (k!(n − k)!)
\binom{n}{k} = \frac{n!}{k!(n-k)!}
Formula for binomial coefficient
n!
n!
Number of permutations of n elements
nPk = n! / (n − k)!
P(n, k) = \frac{n!}{(n-k)!}
Number of permutations of k elements chosen from n
nCk = n! / (k!(n − k)!)
C(n, k) = \frac{n!}{k!(n-k)!}
Number of combinations of k elements chosen from n
nHk
\binom{n+k-1}{k}
Number of ways to distribute k identical items into n distinct groups (combinations with replacement)
B(n)
B(n)
Bell number, the number of ways to partition a set of n elements
S(n, k)
S(n, k)
Stirling number of the second kind, the number of ways to partition a set of n elements into k non-empty subsets
|A ∪ B| = |A| + |B| − |A ∩ B|
|A \cup B| = |A| + |B| - |A \cap B|
Inclusion-Exclusion principle for two sets
|A₁ ∪ A₂ ∪ ⋯ ∪ Aₙ|
|A_1 \cup A_2 \cup \cdots \cup A_n|
Cardinality of the union of multiple sets
∑(−1)ⁿ⁺¹ |Aᵢ₁ ∩ ⋯ ∩ Aᵢₖ|
\sum (-1)^{n+1} |A_{i_1} \cap \cdots \cap A_{i_k}|
General formula for Inclusion-Exclusion principle
G(x) = ∑ₙ₌₀ aₙxⁿ
G(x) = \sum_{n=0}^\infty a_n x^n
Ordinary generating function
H(x) = ∏ₙ₌₁ (1 − xⁿ)⁻¹
H(x) = \prod_{n=1}^\infty (1 - x^n)^{-1}
Exponential generating function
F(x, y) = ∑ₘₙ aₘₙ xᵐ yⁿ
F(x, y) = \sum_{m, n} a_{m, n} x^m y^n
Bivariate generating function
p(n)
p(n)
Number of partitions of integer n
q(n)
q(n)
Number of distinct partitions of n
λ ⊢ n
\lambda \vdash n
Partition λ of n
n = λ₁ + λ₂ + ... + λₖ
n = \lambda_1 + \lambda_2 + \cdots + \lambda_k
A specific partition of n
Cₙ
C_n
nth Catalan number
Cₙ = (2n)! / ((n+1)!n!)
C_n = \frac{(2n)!}{(n+1)!n!}
Formula for Catalan number
C₀, C₁, C₂, ...
C_0, C_1, C_2, \ldots
Sequence of Catalan numbers
aₙ = aₙ₋₁ + aₙ₋₂
a_n = a_{n-1} + a_{n-2}
Example recurrence relation (Fibonacci numbers)
T(n) = 2T(n/2) + n
T(n) = 2T(n/2) + n
Divide-and-conquer recurrence relation
a₀ = c₀, aₙ = Σₖ aₖfₖₙ
a_0 = c_0, a_n = \sum_k a_k f_{kn}
General recurrence relation
G = (V, E)
G = (V, E)
Graph G with vertices V and edges E
|V|
|V|
Number of vertices in a graph
|E|
|E|
Number of edges in a graph
deg(v)
\text{deg}(v)
Degree of vertex v
χ(G)
\chi(G)
Chromatic number of a graph
T(G)
T(G)
Number of spanning trees in graph G