Visual Tools
Calculators
Tables
Mathematical Keyboard
Converters
Other Tools

Probability Symbols



Linear Algebra
Mathematical Logic
Calculus
Trigonometry
Set Theory
Combinatorics
symbollatex codeexplanation
P(A ∩ B)
P(A \cap B)
Probability of A and B occurring
P(A ∪ B)
P(A \cup B)
Probability of A or B occurring
P(A | B)
P(A \mid B)
Conditional probability of A given B
E(X)
E(X)
Expected value of random variable X
Var(X)
\text{Var}(X)
Variance of random variable X
Cov(X, Y)
\text{Cov}(X, Y)
Covariance of random variables X and Y
P(A)
P(A)
Probability of event A
P(¬A)
P(\neg A)
Probability of not A
P(A ∩ B)
P(A \cap B)
Probability of A and B
P(A ∪ B)
P(A \cup B)
Probability of A or B
P(A | B)
P(A \mid B)
Conditional probability of A given B
X
X
Random variable X
f_X(x)
f_X(x)
Probability density function of X
F_X(x)
F_X(x)
Cumulative distribution function of X
μ
\mu
Mean of a distribution
σ²
\sigma^2
Variance of a distribution
σ
\sigma
Standard deviation of a distribution
Bin(n, p)
\text{Bin}(n, p)
Binomial distribution with n trials and probability p
Poisson(λ)
\text{Poisson}(\lambda)
Poisson distribution with rate λ
N(μ, σ²)
\mathcal{N}(\mu, \sigma^2)
Normal distribution with mean μ and variance σ²
Exp(λ)
\text{Exp}(\lambda)
Exponential distribution with rate λ
U(a, b)
\text{U}(a, b)
Uniform distribution on the interval [a, b]
E(X)
E(X)
Expected value of X
Var(X)
\text{Var}(X)
Variance of X
SD(X)
\text{SD}(X)
Standard deviation of X
Cov(X, Y)
\text{Cov}(X, Y)
Covariance of X and Y
Corr(X, Y)
\text{Corr}(X, Y)
Correlation of X and Y
H₀
H_0
Null hypothesis
H₁
H_1
Alternative hypothesis
α
\alpha
Significance level
p-value
\text{p-value}
Probability of observing the data under H₀
z
z
Z-score in standard normal distribution
t
t
T-score in Student's t-distribution
H(X)
H(X)
Entropy of random variable X
I(X; Y)
I(X; Y)
Mutual information between X and Y
D(P || Q)
D(P \| Q)
Kullback–Leibler divergence between distributions P and Q
M_X(t)
M_X(t)
Moment generating function of random variable X
M_X(t) = E(e^(tX))
M_X(t) = E(e^{tX})
Definition of the moment generating function
M'(0) = E(X)
M'(0) = E(X)
The first derivative of the MGF gives the mean
M''(0) = Var(X) + (E(X))²
M''(0) = \text{Var}(X) + (E(X))^2
The second derivative of the MGF relates to variance
P(X ≥ a) ≤ E(X)/a
P(X \geq a) \leq \frac{E(X)}{a}
Markov's inequality
P(|X − μ| ≥ kσ) ≤ 1/k²
P(|X - \mu| \geq k\sigma) \leq \frac{1}{k^2}
Chebyshev's inequality
P(Sₙ/n − μ ≥ ε) ≤ e^(−nε²/2σ²)
P\left(\frac{S_n}{n} - \mu \geq \epsilon\right) \leq e^{-\frac{n\epsilon^2}{2\sigma^2}}
Hoeffding's inequality for large deviations
P(A | B)
P(A \mid B)
Posterior probability of A given B
P(A | B) = (P(B | A)P(A)) / P(B)
P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)}
Bayes' theorem
P(A, B)
P(A, B)
Joint probability of A and B
P(A ∩ B) = P(A)P(B | A)
P(A \cap B) = P(A) P(B \mid A)
Chain rule of probability
Y = β₀ + β₁X + ε
Y = \beta_0 + \beta_1 X + \epsilon
Linear regression equation
R^2
Coefficient of determination
ρ(X, Y)
\rho(X, Y)
Pearson correlation coefficient between X and Y
Cov(X, Y) = E(XY) − E(X)E(Y)
\text{Cov}(X, Y) = E(XY) - E(X)E(Y)
Covariance formula