Visual Tools
Calculators
Tables
Mathematical Keyboard
Converters
Other Tools

Trigonometry Symbols



Linear Algebra
Mathematical Logic
Calculus
Set Theory
Combinatorics
Probability
symbollatex codeexplanation
sin(θ)
\sin(\theta)
Sine function
cos(θ)
\cos(\theta)
Cosine function
tan(θ)
\tan(\theta)
Tangent function
cot(θ)
\cot(\theta)
Cotangent function
sec(θ)
\sec(\theta)
Secant function
csc(θ)
\csc(\theta)
Cosecant function
sin⁻¹(x)
\sin^{-1}(x)
Inverse sine (arcsine) function
cos⁻¹(x)
\cos^{-1}(x)
Inverse cosine (arccosine) function
tan⁻¹(x)
\tan^{-1}(x)
Inverse tangent (arctangent) function
cot⁻¹(x)
\cot^{-1}(x)
Inverse cotangent (arccotangent) function
sec⁻¹(x)
\sec^{-1}(x)
Inverse secant (arcsecant) function
csc⁻¹(x)
\csc^{-1}(x)
Inverse cosecant (arccosecant) function
sin²(θ) + cos²(θ) = 1
\sin^2(\theta) + \cos^2(\theta) = 1
Pythagorean identity
1 + tan²(θ) = sec²(θ)
1 + \tan^2(\theta) = \sec^2(\theta)
Pythagorean identity for tangent and secant
1 + cot²(θ) = csc²(θ)
1 + \cot^2(\theta) = \csc^2(\theta)
Pythagorean identity for cotangent and cosecant
sin(2θ) = 2sin(θ)cos(θ)
\sin(2\theta) = 2\sin(\theta)\cos(\theta)
Double angle identity for sine
cos(2θ) = cos²(θ) − sin²(θ)
\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta)
Double angle identity for cosine
tan(2θ) = 2tan(θ) / (1 − tan²(θ))
\tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)}
Double angle identity for tangent
a/sin(A) = b/sin(B) = c/sin(C)
\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)}
Law of sines
c² = a² + b² − 2abcos(C)
c^2 = a^2 + b^2 - 2ab\cos(C)
Law of cosines
θ = s / r
\theta = \frac{s}{r}
Angle in radians as arc length divided by radius
s = rθ
s = r\theta
Arc length of a circle
(x, y) = (cos(θ), sin(θ))
(x, y) = (\cos(\theta), \sin(\theta))
Coordinates on the unit circle
tan(θ) = y / x
\tan(\theta) = \frac{y}{x}
Tangent as ratio of ( y ) to ( x )
sinh(x)
\sinh(x)
Hyperbolic sine
cosh(x)
\cosh(x)
Hyperbolic cosine
tanh(x)
\tanh(x)
Hyperbolic tangent
coth(x)
\coth(x)
Hyperbolic cotangent
sech(x)
\text{sech}(x)
Hyperbolic secant
csch(x)
\text{csch}(x)
Hyperbolic cosecant
sinh⁻¹(x)
\sinh^{-1}(x)
Inverse hyperbolic sine
cosh⁻¹(x)
\cosh^{-1}(x)
Inverse hyperbolic cosine
tanh⁻¹(x)
\tanh^{-1}(x)
Inverse hyperbolic tangent
coth⁻¹(x)
\coth^{-1}(x)
Inverse hyperbolic cotangent
sech⁻¹(x)
\text{sech}^{-1}(x)
Inverse hyperbolic secant
csch⁻¹(x)
\text{csch}^{-1}(x)
Inverse hyperbolic cosecant
z = r(cos(θ) + isin(θ))
z = r(\cos(\theta) + i\sin(\theta))
Trigonometric form of a complex number
eⁱᶿ = cos(θ) + isin(θ)
e^{i\theta} = \cos(\theta) + i\sin(\theta)
Euler's formula
zⁿ = rⁿ(cos(nθ) + isin(nθ))
z^n = r^n(\cos(n\theta) + i\sin(n\theta))
De Moivre's theorem
sin(α + β) = sin(α)cos(β) + cos(α)sin(β)
\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)
Sine of a sum
sin(α − β) = sin(α)cos(β) − cos(α)sin(β)
\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta)
Sine of a difference
cos(α + β) = cos(α)cos(β) − sin(α)sin(β)
\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)
Cosine of a sum
cos(α − β) = cos(α)cos(β) + sin(α)sin(β)
\cos(\alpha - \beta) = \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta)
Cosine of a difference
tan(α + β) = (tan(α) + tan(β)) / (1 − tan(α)tan(β))
\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)}
Tangent of a sum
tan(α − β) = (tan(α) − tan(β)) / (1 + tan(α)tan(β))
\tan(\alpha - \beta) = \frac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)}
Tangent of a difference