Visual Tools
Calculators
Tables
Mathematical Keyboard
Converters
Other Tools

Calculus


Introduction to Calculus

Calculus is a section of mathematics dealing with continuous change. It encompasses several fundamental concepts: limits, derivatives, integrals, and infinite series. These ideas work together to create a powerful mathematical framework.

The core components of calculus include:
Limits - examining the behavior of functions as they approach specific values
Differential calculus - studying rates of change through derivatives
Integral calculus - analyzing accumulation and total change
Infinite series - representing functions as sums of infinite terms

Differential calculus allows us to find instantaneous rates of change and optimize functions, while integral calculus provides tools for calculating areas, volumes, and accumulated quantities. The connection between these two branches, established by the Fundamental Theorem of Calculus, creates a unified system for analyzing continuous change.

Applications of calculus extend throughout science, engineering, and economics. In physics, it models motion and energy; in engineering, it optimizes designs and processes; in economics, it analyzes rates of growth and market behavior. The subject's precise mathematical framework makes it essential for understanding and describing natural phenomena.

Calculus Formulas

Visit Calculus formulas page.

Definition of a Limit

limxaf(x)=L\lim_{x \to a} f(x) = L

Limit Laws - Sum Rule

limxa[f(x)+g(x)]=limxaf(x)+limxag(x)\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)

Limit Laws - Difference Rule

limxa[f(x)g(x)]=limxaf(x)limxag(x)\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)

Limit Laws - Product Rule

limxa[f(x)g(x)]=(limxaf(x))(limxag(x))\lim_{x \to a} [f(x) \cdot g(x)] = \left(\lim_{x \to a} f(x)\right) \cdot \left(\lim_{x \to a} g(x)\right)

Limit Laws - Quotient Rule

limxa(f(x)g(x))=limxaf(x)limxag(x),providedlimxag(x)0\lim_{x \to a} \left( \frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, provided \lim_{x \to a} g(x) \ne 0

Limit Laws - Constant Multiple Rule

limxa[cf(x)]=climxaf(x)\lim_{x \to a} [c \cdot f(x)] = c \cdot \lim_{x \to a} f(x)

Special Limit of Sine over x

limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1

Special Exponential Limit

limx0ex1x=1\lim_{x \to 0} \frac{e^x - 1}{x} = 1

Limit of (1 + 1/n)^n

limn(1+1n)n=e\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e

Limit of a Constant Function

limxac=c\lim_{x \to a} c = c

Limit of Identity Function

limxax=a\lim_{x \to a} x = a

Definition of the Derivative

f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}

Power Rule

ddx[xn]=nxn1\frac{d}{dx}[x^n] = n x^{n-1}

Constant Rule

ddx[c]=0\frac{d}{dx}[c] = 0

Constant Multiple Rule

ddx[cf(x)]=cf(x)\frac{d}{dx}[c \cdot f(x)] = c \cdot f'(x)

Sum and Difference Rules

ddx[f(x)±g(x)]=f(x)±g(x)\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)

Product Rule

ddx[f(x)g(x)]=f(x)g(x)+f(x)g(x)\frac{d}{dx}[f(x) \cdot g(x)] = f'(x)g(x) + f(x)g'(x)

Quotient Rule

ddx(f(x)g(x))=f(x)g(x)f(x)g(x)[g(x)]2\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}

Chain Rule

ddx[f(g(x))]=f(g(x))g(x)\frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)

Derivative of Sine Function

ddx[sinx]=cosx\frac{d}{dx}[\sin x] = \cos x

Derivative of Cosine Function

ddx[cosx]=sinx\frac{d}{dx}[\cos x] = -\sin x

Derivative of Tangent Function

ddx[tanx]=sec2x\frac{d}{dx}[\tan x] = \sec^2 x

Derivative of Exponential Function

ddx[ex]=ex\frac{d}{dx}[e^{x}] = e^{x}

Derivative of a^x

ddx[ax]=axlna\frac{d}{dx}[a^{x}] = a^{x} \ln a

Derivative of Natural Logarithm

ddx[lnx]=1x\frac{d}{dx}[\ln x] = \frac{1}{x}

Derivative of Logarithm Base a

ddx[logax]=1xlna\frac{d}{dx}[\log_a x] = \frac{1}{x \ln a}

Derivative of Inverse Sine

ddx[arcsinx]=11x2\frac{d}{dx}[\arcsin x] = \frac{1}{\sqrt{1 - x^2}}

Derivative of Inverse Cosine

ddx[arccosx]=11x2\frac{d}{dx}[\arccos x] = \frac{-1}{\sqrt{1 - x^2}}

Derivative of Inverse Tangent

ddx[arctanx]=11+x2\frac{d}{dx}[\arctan x] = \frac{1}{1 + x^2}

Indefinite Integral (Antiderivative)

f(x)dx=F(x)+C\int f(x) \, dx = F(x) + C

Definite Integral

abf(x)dx=F(b)F(a)\int_a^b f(x) \, dx = F(b) - F(a)

Basic Integration Rule - Power Rule

xndx=xn+1n+1+C,wheren1\int x^n \, dx = \frac{x^{n+1}}{n+1} + C, where n \ne -1

Basic Integration Rule - Constant Multiple

cf(x)dx=cf(x)dx\int c \cdot f(x) \, dx = c \cdot \int f(x) \, dx

Basic Integration Rule - Sum and Difference

[f(x)±g(x)]dx=f(x)dx±g(x)dx\int [f(x) \pm g(x)] \, dx = \int f(x) \, dx \pm \int g(x) \, dx

Integral of Sine Function

sinxdx=cosx+C\int \sin x \, dx = -\cos x + C

Integral of Cosine Function

cosxdx=sinx+C\int \cos x \, dx = \sin x + C

Integral of Exponential Function

exdx=ex+C\int e^{x} \, dx = e^{x} + C

Integral of a^x

axdx=axlna+C\int a^{x} \, dx = \frac{a^{x}}{\ln a} + C

Integral of Reciprocal Function

1xdx=lnx+C\int \frac{1}{x} \, dx = \ln |x| + C

Fundamental Theorem of Calculus - Part 1

abf(x)dx=F(b)F(a)\int_a^b f(x) \, dx = F(b) - F(a)

Fundamental Theorem of Calculus - Part 2

ddx(axf(t)dt)=f(x)\frac{d}{dx} \left( \int_a^x f(t) \, dt \right) = f(x)

Integration by Substitution (Reverse Chain Rule)

Ifu=g(x),thenf(g(x))g(x)dx=f(u)duIf u = g(x), then \int f(g(x)) g'(x) \, dx = \int f(u) \, du

Integration by Parts

udv=uvvdu\int u \, dv = u v - \int v \, du

Partial Fractions Decomposition

DecomposeP(x)Q(x)intosimplerfractionsbeforeintegratingDecompose \frac{P(x)}{Q(x)} into simpler fractions before integrating

Trigonometric Integrals

UseidentitiestosimplifysinnxcosmxdxUse identities to simplify \int \sin^n x \cos^m x \, dx

Improper Integral

af(x)dx=limbabf(x)dx\int_a^{\infty} f(x) \, dx = \lim_{b \to \infty} \int_a^b f(x) \, dx

Average Value of a Function

favg=1baabf(x)dxf_{\text{avg}} = \frac{1}{b - a} \int_a^b f(x) \, dx

Definition of a Limit

limxaf(x)=L\lim_{x \to a} f(x) = L

Limit Laws - Sum Rule

limxa[f(x)+g(x)]=limxaf(x)+limxag(x)\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)

Limit Laws - Difference Rule

limxa[f(x)g(x)]=limxaf(x)limxag(x)\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)

Limit Laws - Product Rule

limxa[f(x)g(x)]=(limxaf(x))(limxag(x))\lim_{x \to a} [f(x) \cdot g(x)] = \left(\lim_{x \to a} f(x)\right) \cdot \left(\lim_{x \to a} g(x)\right)

Limit Laws - Quotient Rule

limxa(f(x)g(x))=limxaf(x)limxag(x),providedlimxag(x)0\lim_{x \to a} \left( \frac{f(x)}{g(x)} \right) = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, provided \lim_{x \to a} g(x) \ne 0

Limit Laws - Constant Multiple Rule

limxa[cf(x)]=climxaf(x)\lim_{x \to a} [c \cdot f(x)] = c \cdot \lim_{x \to a} f(x)

Special Limit of Sine over x

limx0sinxx=1\lim_{x \to 0} \frac{\sin x}{x} = 1

Special Exponential Limit

limx0ex1x=1\lim_{x \to 0} \frac{e^x - 1}{x} = 1

Limit of (1 + 1/n)^n

limn(1+1n)n=e\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e

Limit of a Constant Function

limxac=c\lim_{x \to a} c = c

Limit of Identity Function

limxax=a\lim_{x \to a} x = a

Definition of the Derivative

f(x)=limh0f(x+h)f(x)hf'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}

Power Rule

ddx[xn]=nxn1\frac{d}{dx}[x^n] = n x^{n-1}

Constant Rule

ddx[c]=0\frac{d}{dx}[c] = 0

Constant Multiple Rule

ddx[cf(x)]=cf(x)\frac{d}{dx}[c \cdot f(x)] = c \cdot f'(x)

Sum and Difference Rules

ddx[f(x)±g(x)]=f(x)±g(x)\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)

Product Rule

ddx[f(x)g(x)]=f(x)g(x)+f(x)g(x)\frac{d}{dx}[f(x) \cdot g(x)] = f'(x)g(x) + f(x)g'(x)

Quotient Rule

ddx(f(x)g(x))=f(x)g(x)f(x)g(x)[g(x)]2\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}

Chain Rule

ddx[f(g(x))]=f(g(x))g(x)\frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)

Derivative of Sine Function

ddx[sinx]=cosx\frac{d}{dx}[\sin x] = \cos x

Derivative of Cosine Function

ddx[cosx]=sinx\frac{d}{dx}[\cos x] = -\sin x

Derivative of Tangent Function

ddx[tanx]=sec2x\frac{d}{dx}[\tan x] = \sec^2 x

Derivative of Exponential Function

ddx[ex]=ex\frac{d}{dx}[e^{x}] = e^{x}

Derivative of a^x

ddx[ax]=axlna\frac{d}{dx}[a^{x}] = a^{x} \ln a

Derivative of Natural Logarithm

ddx[lnx]=1x\frac{d}{dx}[\ln x] = \frac{1}{x}

Derivative of Logarithm Base a

ddx[logax]=1xlna\frac{d}{dx}[\log_a x] = \frac{1}{x \ln a}

Derivative of Inverse Sine

ddx[arcsinx]=11x2\frac{d}{dx}[\arcsin x] = \frac{1}{\sqrt{1 - x^2}}

Derivative of Inverse Cosine

ddx[arccosx]=11x2\frac{d}{dx}[\arccos x] = \frac{-1}{\sqrt{1 - x^2}}

Derivative of Inverse Tangent

ddx[arctanx]=11+x2\frac{d}{dx}[\arctan x] = \frac{1}{1 + x^2}

Indefinite Integral (Antiderivative)

f(x)dx=F(x)+C\int f(x) \, dx = F(x) + C

Definite Integral

abf(x)dx=F(b)F(a)\int_a^b f(x) \, dx = F(b) - F(a)

Basic Integration Rule - Power Rule

xndx=xn+1n+1+C,wheren1\int x^n \, dx = \frac{x^{n+1}}{n+1} + C, where n \ne -1

Basic Integration Rule - Constant Multiple

cf(x)dx=cf(x)dx\int c \cdot f(x) \, dx = c \cdot \int f(x) \, dx

Basic Integration Rule - Sum and Difference

[f(x)±g(x)]dx=f(x)dx±g(x)dx\int [f(x) \pm g(x)] \, dx = \int f(x) \, dx \pm \int g(x) \, dx

Integral of Sine Function

sinxdx=cosx+C\int \sin x \, dx = -\cos x + C

Integral of Cosine Function

cosxdx=sinx+C\int \cos x \, dx = \sin x + C

Integral of Exponential Function

exdx=ex+C\int e^{x} \, dx = e^{x} + C

Integral of a^x

axdx=axlna+C\int a^{x} \, dx = \frac{a^{x}}{\ln a} + C

Integral of Reciprocal Function

1xdx=lnx+C\int \frac{1}{x} \, dx = \ln |x| + C

Fundamental Theorem of Calculus - Part 1

abf(x)dx=F(b)F(a)\int_a^b f(x) \, dx = F(b) - F(a)

Fundamental Theorem of Calculus - Part 2

ddx(axf(t)dt)=f(x)\frac{d}{dx} \left( \int_a^x f(t) \, dt \right) = f(x)

Integration by Substitution (Reverse Chain Rule)

Ifu=g(x),thenf(g(x))g(x)dx=f(u)duIf u = g(x), then \int f(g(x)) g'(x) \, dx = \int f(u) \, du

Integration by Parts

udv=uvvdu\int u \, dv = u v - \int v \, du

Partial Fractions Decomposition

DecomposeP(x)Q(x)intosimplerfractionsbeforeintegratingDecompose \frac{P(x)}{Q(x)} into simpler fractions before integrating

Trigonometric Integrals

UseidentitiestosimplifysinnxcosmxdxUse identities to simplify \int \sin^n x \cos^m x \, dx

Improper Integral

af(x)dx=limbabf(x)dx\int_a^{\infty} f(x) \, dx = \lim_{b \to \infty} \int_a^b f(x) \, dx

Average Value of a Function

favg=1baabf(x)dxf_{\text{avg}} = \frac{1}{b - a} \int_a^b f(x) \, dx