Explore Mathematical Logic formulas with explanations and examples
Double Negation Law
¬(¬P)=P De Morgan's Law (Conjunction)
¬(P∧Q)=¬P∨¬Q De Morgan's Law (Disjunction)
¬(P∨Q)=¬P∧¬Q Implication as Disjunction
P→Q=¬P∨Q Contrapositive
P→Q=¬Q→¬P Biconditional Definition
P↔Q=(P→Q)∧(Q→P) Distributive Law (Conjunction over Disjunction)
P∧(Q∨R)=(P∧Q)∨(P∧R) Distributive Law (Disjunction over Conjunction)
P∨(Q∧R)=(P∨Q)∧(P∨R) Identity Law (Conjunction)
P∧True=P Identity Law (Disjunction)
P∨False=P Domination Law (Conjunction)
P∧False=False Domination Law (Disjunction)
P∨True=True Idempotent Law (Conjunction)
Idempotent Law (Disjunction)
Negation of Quantifiers (Universal)
¬(∀xP(x))=∃x¬P(x) Negation of Quantifiers (Existential)
¬(∃xP(x))=∀x¬P(x) Universal Instantiation
∀xP(x)→P(c) Existential Generalization
P(c)→∃xP(x) Modus Ponens
From(P→Q)andP,inferQ Modus Tollens
From(P→Q)and¬Q,infer¬P Hypothetical Syllogism
From(P→Q)and(Q→R),infer(P→R) Disjunctive Syllogism
From(P∨Q)and¬P,inferQ Law of Excluded Middle
P∨¬P=True Law of Non-Contradiction
P∧¬P=False Double Negation Law
¬(¬P)=P De Morgan's Law (Conjunction)
¬(P∧Q)=¬P∨¬Q De Morgan's Law (Disjunction)
¬(P∨Q)=¬P∧¬Q Implication as Disjunction
P→Q=¬P∨Q Contrapositive
P→Q=¬Q→¬P Biconditional Definition
P↔Q=(P→Q)∧(Q→P) Distributive Law (Conjunction over Disjunction)
P∧(Q∨R)=(P∧Q)∨(P∧R) Distributive Law (Disjunction over Conjunction)
P∨(Q∧R)=(P∨Q)∧(P∨R) Identity Law (Conjunction)
P∧True=P Identity Law (Disjunction)
P∨False=P Domination Law (Conjunction)
P∧False=False Domination Law (Disjunction)
P∨True=True Idempotent Law (Conjunction)
Idempotent Law (Disjunction)
Negation of Quantifiers (Universal)
¬(∀xP(x))=∃x¬P(x) Negation of Quantifiers (Existential)
¬(∃xP(x))=∀x¬P(x) Universal Instantiation
∀xP(x)→P(c) Existential Generalization
P(c)→∃xP(x) Modus Ponens
From(P→Q)andP,inferQ Modus Tollens
From(P→Q)and¬Q,infer¬P Hypothetical Syllogism
From(P→Q)and(Q→R),infer(P→R) Disjunctive Syllogism
From(P∨Q)and¬P,inferQ Law of Excluded Middle
P∨¬P=True Law of Non-Contradiction
P∧¬P=False