Visual Tools
Calculators
Tables
Mathematical Keyboard
Converters
Other Tools

Linear Algebra Mathematical Symbols



symbollatex codeexplanation
A⊤
A^\top
Matrix transpose
A⁻¹
A^{-1}
Matrix inverse
det(A)
\det(A)
Matrix determinant
tr(A)
\text{tr}(A)
Matrix trace
rank(A)
\text{rank}(A)
Matrix rank
adj(A)
\text{adj}(A)
Matrix adjugate
A⊗B
A \otimes B
Kronecker product
A∘B
A \circ B
Hadamard (elementwise) product
A†
A^\dagger
Conjugate transpose
ker(A)
\text{ker}(A)
Kernel (nullspace) of matrix
ℝⁿ
\mathbb{R}^n
n-dimensional real vector space
span{v₁,...,vₙ}
\text{span}\{v_1,\ldots,v_n\}
Span of vectors
⟨v,w⟩
\langle v,w \rangle
Inner product
∥v∥
\|v\|
Vector norm
v⊥w
v \perp w
Orthogonal vectors
dim(V)
\dim(V)
Dimension of vector space
V⊕W
V \oplus W
Direct sum of vector spaces
Av=λv
Av=\lambda v
Eigenvalue equation
χₐ(λ)
\chi_A(\lambda)
Characteristic polynomial
σ(A)
\sigma(A)
Spectrum (set of eigenvalues)
ρ(A)
\rho(A)
Spectral radius
diag(λ₁,...,λₙ)
\text{diag}(\lambda_1,\ldots,\lambda_n)
Diagonal matrix of eigenvalues
T:V→W
T:V\to W
Linear transformation
im(T)
\text{im}(T)
Image of transformation
ker(T)
\text{ker}(T)
Kernel of transformation
T∘S
T \circ S
Composition of transformations
GL(n,ℝ)
GL(n,\mathbb{R})
General linear group
A=LU
A=LU
LU decomposition
A=QR
A=QR
QR decomposition
A=UΣV⊤
A=U\Sigma V^\top
Singular value decomposition
A=PDP⁻¹
A=PDP^{-1}
Eigendecomposition
A=CC⊤
A=CC^\top
Cholesky decomposition
[a₁₁ a₁₂; a₂₁ a₂₂]
\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}
2×2 matrix
(a b c)
\begin{pmatrix} a & b & c \end{pmatrix}
Row vector
[a; b; c]
\begin{bmatrix} a \\ b \\ c \end{bmatrix}
Column vector
∥a₁₁ a₁₂∥
\begin{vmatrix} a_{11} & a_{12} \end{vmatrix}
Matrix determinant notation
{a₁₁ a₁₂}
\begin{Bmatrix} a_{11} & a_{12} \end{Bmatrix}
Curly brace matrix
aᵢⱼ
a_{ij}
General matrix element
a₁₁
a_{11}
First element
aᵢ₊₁,ⱼ
a_{i+1,j}
Element with offset indices
\cdots
Horizontal ellipsis
\vdots
Vertical ellipsis
\ddots
Diagonal ellipsis
I
I_n
Identity matrix
0
0_{m \times n}
Zero matrix
diag(a₁,…,aₙ)
\text{diag}(a_1,\ldots,a_n)
Diagonal matrix
⎡⎢⎣
\left\lbrack
Left matrix bracket
⎤⎥⎦
\right\rbrack
Right matrix bracket